# Implementing the Business Case Guide for Intercity Passenger Rail Investment

October 19, 2021



AMERICAN ASSOCIATION OF STATE HIGHWAY AND TRANSPORTATION OFFICIALS





### ACKNOWLEDGEMENTS

#### Study Team:

- EBP: Glen Weisbrod, Ira Hirschman, Adam Blair
- Mineta Transportation Institute: Simon Tan

#### **Technical Committee**

- Charlie Quandel Quandel Consultants
- Sharon Greene InfraStrategies
- Toni Horst AECOM
- Jonathan Dees North Carolina DOT, AASHTO CORT
- Eric Peterson APTA HSIPR Committee
- Art Guzzetti APTA

#### **Advisory Committee**

- Joseph Giulietti, Commissioner, Connecticut DOT Chair of APTA HSIPR and AASHTO CORT
- Donna DiMartino (LOSSAN Rail Corridor Agency),
- Al Engel (former Chair of the APTA HS&IPR Committee),
- Shayne Gill (AASHTO),
- Tim Hoeffner (former Director, Michigan DOT Office of Rail),
- David Kutrosky (former Executive Director, Capital Corridor),
- Mariah Morales (Government Affairs, Amtrak),
- Stacey Mortensen (San Joaquin Regional Rail Commission),
- Richard Mudge (Compass Transportation and Technology Inc.),
- Ron Pate (Washington State DOT),
- Patricia Quinn (Northern New England Passenger Rail Authority),
- Arun Rao (Wisconsin DOT, and Chair, States for Passenger Rail),
- James Redeker (former Commissioner of Connecticut DOT),
- Professor P.S. Sriraj (University of Illinois at Chicago),
- Emily Stock (Virginia Dept. of Rail and Public Transportation),
- Julie White (Deputy Secretary, North Carolina DOT),
- Christopher Zappi (Government and External Affairs, Amtrak),
- Matt Dickens (APTA).





### FUNDERS

- APTA –
   American Public Transportation Association
- AASHTO American Association of State Highway and Transportation Officials

#### with

- APTA Business Members Group
- Quandel Consultants
- AECOM
- Mineta Transportation Institute



AMERICAN ASSOCIATION OF STATE HIGHWAY AND TRANSPORTATION OFFICIALS

AASHO







### **SPEAKERS**

Webinar Presentation (30 minutes)

• Glen Weisbrod – Chair, EBP

Implementation Comments (15 minutes)

- Patricia Quinn, Exec. Director, Northern New England Passenger Rail Authority
- Sharon Greene, Managing Principal, InfraStrategies
- Arun Rao, Chair, States-for-Passenger Rail Coalition, Passenger Rail Manager, Wisconsin Department of Transportation

#### Discussion and Q&A (30 minutes)

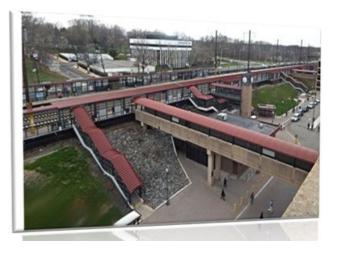
Responses from presenter, panel, additional support by Charlie Quandel (Quandel Consultiants) and Ira Hirschman (EBP)





- 1. The Need for a "Business Case" Concept for Intercity Passenger Rail ROI
- 2. ROI Guide: Elements + Use
- 3. Implementation Process
- 4. Discussion: Implementation Opportunities + Challenges








### 1. THE NEED for Business Case ROI Assessment

#### Intercity Passenger Rail (IPR) – new funding prospects, renewed interest

- 1. Need to responsibly consider ROI, recognize factors of value to constituents (contrast to federal BCA focus on system performance & emissions)
- 2. Need to address factors of legislative/policy importance for levels of government (risk mitigation, economic development, equity, resilience, sustainability)
- 3. Opportunities to leverage state-region-local benefits for support + funding (unique business model)
- 4. Create dialog for multi-level planning + financing (common ground)









#### Business Case ROI = Full Return on Investment

- 1. Addresses limitations of traditional benefit-cost analysis; brings in all relevant factors
- 2. Can make a clear, concise, and compelling assessment that resonates with local, regional, state decision makers who come with different perspectives
- 3. Redefines public "Return on Investment" (ROI) to recognize full benefits and provide a framework for cooperation among levels of government
- 4. Can be relevant for all kinds of passenger rail: commuter/regional, intercity, high-speed









### Core Concept: Business Case ROI

#### Adapt the private sector "business case" for investment

- Sustainable business model
- Resilient to unexpected future economic shocks
- Addresses needs for specific target markets
- Value to shareholders
- Value to customers
- Win goodwill (payback) for quality, service, fairness (equity)

Private industries operate this way, our Public ROI should require nothing less.

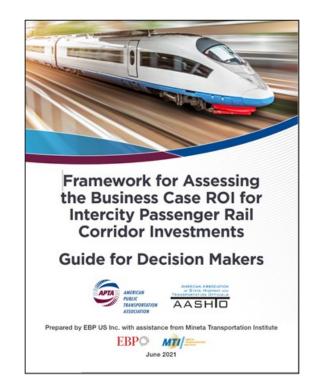








**EBP** 


### 2. ROI ELEMENTS + USE

#### **ROI Elements - Identify relevant:**

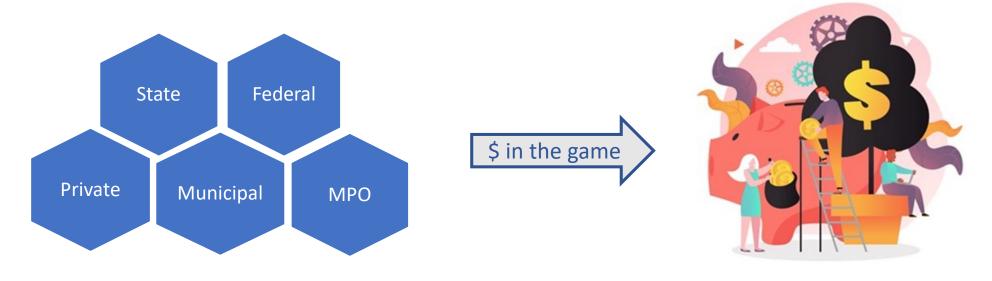
- ROI Stakeholders (agencies, organizations)
- ROI Issues and Concerns
- ROI Metrics and Methods

### ROI Use - Engage applicable ROI stakeholders for:

- Finance
- Support
- Plan approval
- Development










### **ROI Stakeholders: Relevant Parties**

#### Recognize that Intercity Passenger Rail is different from Hwy

- 1. Highway oriented assessment is not sufficient for IPR
- Planning and financing is more complex, more parties involved (due to focus on operators, station development, supporting services)
- 3. User base involves on specific constituencies and city/region links









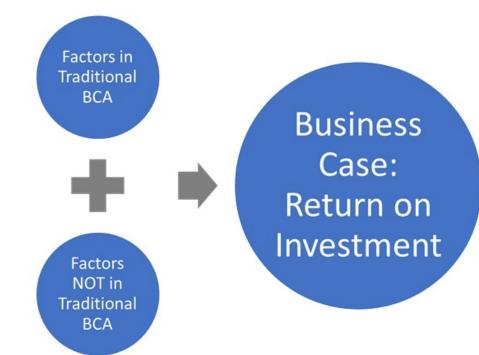
### **ROI Perspectives - Issues and Concerns**

| Perspective         | Constituency                                                       | HS&IPR Public Policy Talking Points (benefit issues)                                                                                                                                                                                                     |  |  |  |  |  |  |
|---------------------|--------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| National<br>Benefit | US (taxpayers,<br>residents and<br>business)                       | <ul> <li>saves time, expense and improves safety for travelers</li> <li>enhances national productivity and hence GDP</li> <li>can alleviate the need for investments in aviation and highway systems</li> <li>reduce greenhouse gas emissions</li> </ul> |  |  |  |  |  |  |
| State<br>Benefit    | State (taxpayers,<br>residents and<br>business)                    | <ul> <li>enhances efficiency of the state's highway, rail and aviation facilities<br/>effectively enlarges labor and business markets</li> <li>leading to more economic activity and tax base growth over time</li> </ul>                                |  |  |  |  |  |  |
| Local<br>Benefit    | Station area, city or<br>metro (taxpayers,<br>residents, business) | <ul> <li>supports growth (of jobs, income, investment) around HSR stations;<br/>adding tax revenue</li> <li>visitors may also dwell longer and spend more money in the city</li> </ul>                                                                   |  |  |  |  |  |  |








### **ROI** Metrics and Methods

#### <u>1. User Benefits</u>

- Travel Time & Cost Savings
- Reliability & Induced Travel Impacts
- <u>2</u>. Societal Spillovers
  - Emissions
  - Safety
- 3. Spatial Connectivity
  - Regional Economic Integration
  - Intermodal Access to Broader Markets
  - Regional Equity: Income Opportunities

### 4. Risk Reduction

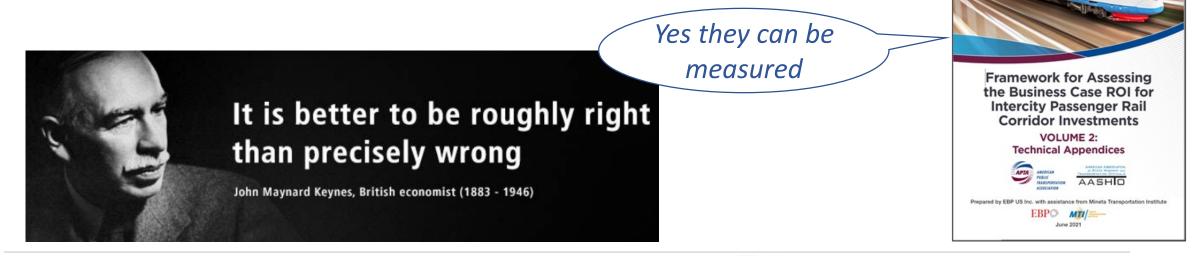
- Resilience/Redundancy (Backup Options)
- Economic Futures (incl. Jobs-Housing Balance)
- 5. Local Land Impact
  - Local Development (productivity and density)
- 6. Operator Impact
  - Revenues & Life Cycle Costs



### Different Factors of Importance from Different Perspectives

| Impacts Potentially Relevant for a<br>HS&IPR Business Case | Federal<br>Govt. | State<br>Govt. | Local + Metro<br>Govt. | Rail System<br>Operators | Land Owners +<br>Developers |                         |
|------------------------------------------------------------|------------------|----------------|------------------------|--------------------------|-----------------------------|-------------------------|
| 1. User Benefits                                           |                  |                |                        |                          |                             |                         |
| Travel Time Savings                                        | *                | ***            |                        |                          |                             | Illustrative            |
| Travel Time Reliability                                    | \$*<br>*         | ***            |                        |                          |                             | Illustrative<br>Example |
| Travel Cost Savings                                        | \$ +             | ***            |                        |                          |                             | Example /               |
| Induced Travel                                             | *                | ***            |                        |                          |                             |                         |
| 2. Societal Spillover Benefits                             |                  |                |                        |                          |                             |                         |
| Emissions                                                  | *                | *              | *                      |                          |                             |                         |
| Safety                                                     | \$*<br>*         | ***            | *                      | <b>*</b>                 |                             |                         |
| 3. Spatial Connectivity Benefits                           |                  |                |                        |                          |                             |                         |
| Regional Integration                                       |                  | *              |                        |                          |                             |                         |
| Intermodal Transfer Connectivity                           | ÷                | ***            |                        |                          | æ                           |                         |
| Equity                                                     |                  | *              | ***                    |                          |                             |                         |
| 4. Risk Reduction Benefits                                 |                  |                |                        |                          |                             |                         |
| Resilience/Redundancy                                      |                  | *              | *                      |                          |                             |                         |
| Sustainable Economic Future                                |                  | *              | ***                    |                          |                             |                         |
| 5. Local Land Impacts                                      |                  |                |                        |                          |                             |                         |
| Local Land Development                                     |                  |                | *                      |                          | **                          |                         |
| 6. Operator Impact                                         |                  |                |                        |                          |                             |                         |
| Operator Revenues                                          |                  |                |                        | ***                      | *                           |                         |
| Life Cycle Costs                                           | \$ \$            | \$\$ \$        |                        | \$\$ \$ \$               | **                          |                         |






EBP

### Methods to Quantify and Monetize Values

#### Dismiss the doubters who see a "zero sum" gain from regional benefits ...identify and document (don't ignore) real gains

- 1. Creating activity concentrations at station areas (generating economic scale benefits)
- 2. Connecting complementary econ activities (enabling market synergies, satellite activities)
- 3. Expanding intermodal connectivity options
- 4. Saving on costs paid due to inequity, jobs-housing imbalance, lack of infra redundancy, infrastructure capacity imbalance (costs to: affected parties, government, society)







14

### Examples: Measuring Broader Public Benefits

Don't make it overly complicated; just talk with key players to identify key benefit categories, then document their magnitude and \$

- 1. Connecting complementary economic activities *(enabling market synergies, satellite activities)*
- 2. Creating activity concentrations at station areas (generating income from economic scale)
- 3. Expanding intermodal connectivity options
- 4. Saving on costs paid due to access inequity, jobs-housing imbalance (costs to affected parties, government, society)
- 5. Reducing cost risks from road closures, natural disasters, weather events, infrastructure failures (cost savings from having alternative options)

e.g., connecting university, R&D, sports \_\_\_\_\_\_activity centers

> e.g., airport transfers, expanding markets, saving time

e.g., Δ income, payments for unemployment, housing subsidy, poverty programs





15

### **ROI** Should Include Multi-Jurisdiction Linkage Impacts

- It involves multiple jurisdictions linking cities and usually also states.
- It concentrates activity at key intermediate cities and their station areas.
- These activity links are of local + state interest



AMERICAN

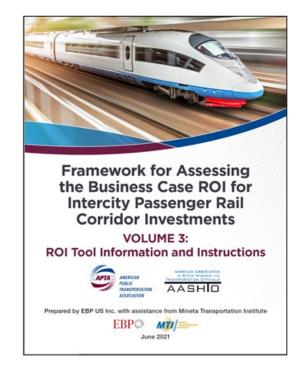
RANSPORTATIO ASSOCIATION

DE STATE HIGHWAY AN

AASHO

EBPCEBP | 16

Air - 0


### 3. IMPLEMENTATION PROCESS – Underlying Foundation

*No single perspective captures all benefits to all parties.* Each perspective recognizes some and ignores others.

A multi-perspective approach can recognize <u>all benefits</u> and allocate them to jurisdictions that value them.

*Each jurisdiction can have its own ROI* based on its recognized benefits and corresponding allocation of costs.

*Result is higher overall ROI and stronger case* for federal-state-local-private support and funding participation.



→ The ROI Tool calculates and allocates benefits for each perspective

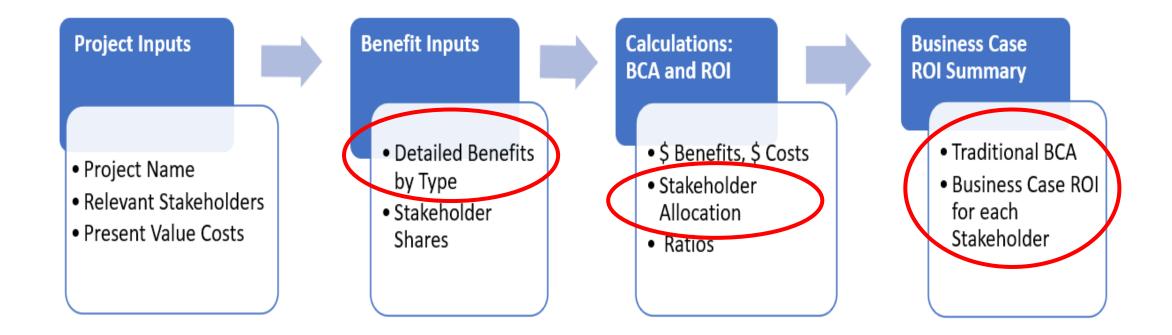






## Process Steps

- 1) Identify + Engage all relevant parties (state, regional, local, private) and agree on business case themes
- 2) Define scenarios, assemble data for business case metrics –leverage the ROI Guide using travel demand + economic data for a common measurement framework
- 3) Evaluate metric from relevant perspectives leverage the ROI Guide and Tool to discern different perspectives and cumulative benefits among parties
- 4) Communicate results on cumulative benefits and costs among parties to provide a more complete Business Case ROI
- 5) Use the results to support public/private and state/local/federal decision-making and financing










### Business Case ROI Tool (spreadsheet workbook)









### Basis for Allocating Benefits Among Jurisdictions

#### Illustrative allocations based on transportation model

- by Track Mileage for allocating operation and maintenance costs
- by Passenger-Miles for allocating emissions reduction benefits
- by Station (Origin) Boardings for allocating Δ passenger-hrs. (time savings), as well as passenger cost savings and traveler safety gain

#### Illustrative allocations based on transportation and economic models

- by Station Destination Alightings for allocating local spending and income effects
- by Government Unit for tax base gain, subsidy cost reduction, risk cost reductions
- by Region for population unemployment reduction, income gain
   for employment market expansion, productivity gain





### Benefit Input and Allocation

| А        | В                         | C                                            | D                                     | E                 | F                           | Н                |         | J       | K       | L         | М       | Ν       | 0             | Р          |
|----------|---------------------------|----------------------------------------------|---------------------------------------|-------------------|-----------------------------|------------------|---------|---------|---------|-----------|---------|---------|---------------|------------|
|          | Rail Project X -          | Benefit Input and Alloc                      | ation                                 |                   |                             |                  |         |         |         |           |         |         |               |            |
|          |                           | es into submetrics, approaches to valuation, |                                       |                   |                             |                  |         |         |         |           |         |         |               |            |
|          | breakdown of benefic type | 5 meo 300 metrico, approaeneo to valuation,  | and stakenolder anotation             |                   |                             |                  |         |         |         |           |         |         | I             |            |
| Benefit  |                           | Economic Value                               |                                       | Source of         | Stakeholder                 | Total PV to be   |         |         |         |           |         |         |               | P3 Project |
| Category | Benefit Type              | Measure                                      | Valuation Approach                    | Valuation (see    | Allocation Basis            | Allocated        | Federal | State 1 | State 2 | State 3   | Local 1 | local 2 | Public Agency | -          |
| category |                           | Wedsure                                      | valuation Approach                    | Valuation (See    | Anocation basis             | Anocateu         | reuerar | State 1 | State 2 | State 5   | Local I | LOCAI 2 | Tublic Agency | Developers |
|          | Time Savings              |                                              |                                       |                   |                             |                  | _       |         |         |           |         |         |               |            |
|          |                           | \$ value passenger hours saved by            | Average hourly value of travel time - |                   |                             |                  |         |         |         |           |         |         |               |            |
|          |                           | existing rail users                          | intercity rail travelers              |                   | reduction in annual         | \$ 537,000,000   | 46%     | 27%     | 6%      | 41%       | 74%     | 74%     | 189           | i 139      |
|          |                           | \$ value passenger hours saved by            | Average hourly value of travel time - |                   | passenger hours, by         |                  |         |         |         |           |         |         |               |            |
|          |                           | car users shifting to rail                   | intercity highway travelers           |                   | stakeholder trip origins    | \$ 3,000,000,000 | 80%     | 45%     | 68%     | 69%       | 66%     | 48%     | 79%           | 5 729      |
|          |                           | \$ value passenger hours saved by            | Average hourly value of time -        |                   | statenoider trip origins    |                  |         |         |         |           |         |         |               |            |
|          |                           | intercity bus users shifting to rail         | intercity bus travelers               |                   |                             | \$ 50,000,000    | 42%     | 93%     | 5%      | 73%       | 16%     | 70%     | 59%           | 6 489      |
|          |                           | \$ value person hours reduced for air        | r Average hourly value of time - air  |                   | national level effects only |                  |         |         |         |           |         |         |               |            |
|          |                           | travelers shifting to rail                   | travelers                             | DOT, FAA guidance | national level encets only  | \$ 200,000,000   | 71%     | 52%     | 60%     | 96%       | 4%      | 64%     | 819           | i 69       |
|          |                           | \$ value passenger hours saved by            | Average hourly value of travel time - |                   | reduction in annual         |                  |         |         |         |           |         |         |               |            |
|          |                           | remaining car users                          | intercity highway travelers           | _                 | passenger hours, by         | \$ 500,000,000   | 8%      | 35%     | 24%     | 99%       | 58%     | 83%     | 37%           | 5 749      |
|          |                           | \$ value passenger hours saved by            | Average hourly value of time -        |                   | stakeholder trip origins    |                  |         |         |         |           |         |         |               |            |
|          |                           | remaining bus users                          | intercity bus travelers               |                   | statenoider trip origins    | \$ 500,000,000   | 83%     | 20%     | 10%     | 26%       | 62%     | 84%     | 20%           | i 489      |
|          |                           | \$ value passenger hours saved for           | Average hourly value of time - air    |                   |                             |                  |         |         |         | atio      | n 0/    | Drov    | idaça         |            |
|          |                           | remaining air travelers, including           | travelers                             |                   | national level effects only |                  |         |         |         |           |         |         | ides a        |            |
|          |                           | propagated delay                             |                                       |                   |                             | \$ 500,000,000   |         | vi      | ew c    | of rel    | lativ   | e be    | nefits        | 09         |
| Ś        |                           | Total Time Savings Benefits                  |                                       |                   |                             | \$ 5,287,000,0   |         |         |         |           |         |         |               |            |
| IMPACTS  | Cost Savings              |                                              | 1                                     | 1                 | 1                           |                  |         | ar      | non     | g pa      | rties   | •       |               |            |
| PA       |                           | reduced auto vehicle operating               |                                       |                   |                             |                  |         |         |         |           |         |         |               |            |
|          |                           | costs from reduced VMT - auto to             |                                       |                   | reduction in annual VMT, by |                  |         |         |         | · · · · · |         |         | 100           |            |
| LAND     |                           | rail mode shift                              | VOC per mile for light duty vehicles  | 4                 | stakeholder trip origin     | \$ 100,00        |         | 11      | ו ney   | NIII S    | sum     | το οι   | ver 100       |            |
| P        |                           |                                              |                                       |                   | reduction in annual air     |                  |         | %       | whe     | nev       | er h    | enef    | itc           |            |
| AL       |                           | reduced air travel costs - air to rail       |                                       | DOT, FAA guidance | passenger trips, by         |                  |         |         |         |           |         |         |               |            |
| Ö        |                           | mode shift                                   | average commercial air fare           | 4                 | stakeholder trip origin     | \$ 300,000,000   | -       | 0       | verla   | p an      | non     | g par   | rties 🍃       | 689        |
| ž        |                           |                                              |                                       |                   | reduction in annual bus     |                  |         |         |         | · · · · · |         |         |               |            |

82%

Intro and User Guide

Project Inputs Benefit Input and Allocation

reduced bus travel costs - bus to rail

average intercity bus fare

mode shift

ROI Summary

passenger trips, by

stakeholder trip origin

(+)

25,000,000

30%

44%

80%

ROI Calculations

1

36%

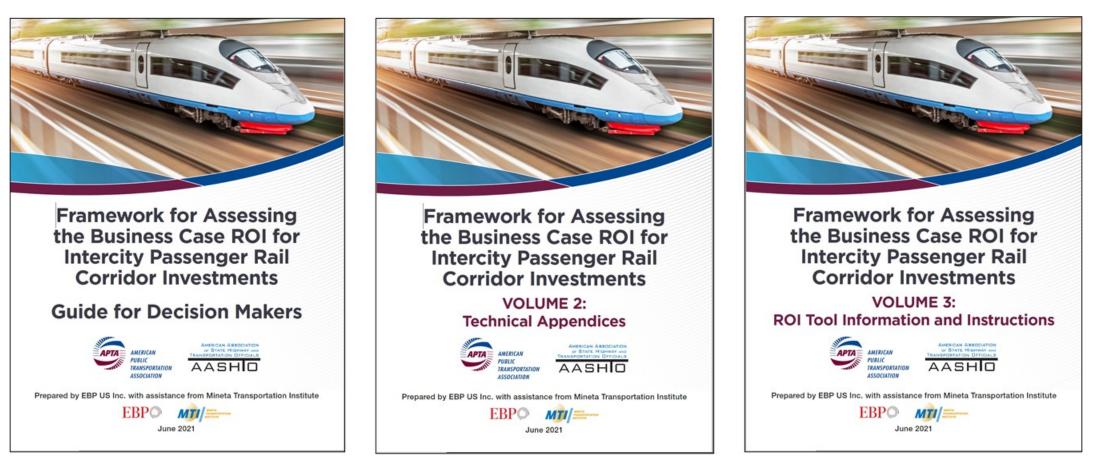
53%

4%

### Example of Results

|                                                                   | Т                                     | otal B | enefit      |                  |                  |                |       |               |                  |                  | Public     | P3 Project   |
|-------------------------------------------------------------------|---------------------------------------|--------|-------------|------------------|------------------|----------------|-------|---------------|------------------|------------------|------------|--------------|
| Benefit                                                           | (                                     | PV)    |             | Federal          | State 1          | State 2        |       | State 3       | Local 1          | Local 2          | Agency     | Develope     |
| Time Savings                                                      | -                                     | 5,     | 287,000,000 | 97               | 7% 3             | 0%             | 26%   | 40%           | 18%              | 28%              | 10%        |              |
| Cost Savings                                                      | · · · · · · · · · · · · · · · · · · · | ; ;    | 850,000,000 | 93               | 3% 3             | 0%             | 23%   | 40%           | 14%              | 20%              | 10%        |              |
| <b>Reliability Savings</b>                                        | 4                                     | ; ;    | 200,000,000 | 85               | 5% 3             | 5%             | 20%   | 30%           | 15%              | 30%              | 10%        |              |
| Induced Travel                                                    |                                       | ; ;    | 200,000,000 | 90               | )% 2             | 0%             | 30%   | 20%           | 30%              | 30%              | 10%        |              |
| <b>Environmental (Emission</b>                                    | is)                                   | ; ;    | 380,000,000 | 40               | )% 1             | .3%            | 15%   | 12%           | 9%               | 9%               | 2%         |              |
| Safety                                                            | 4                                     | 5      | 35,000,000  | 100              | )% 3             | 0%             | 25%   | 45%           | 30%              | 30%              | 0%         | i            |
| <b>Regional Integration</b>                                       |                                       | i 1,   | 500,000,000 | 40               | )% 3             | 0%             | 40%   | 30%           | 50%              | 50%              | 0%         | i            |
| Intermodal Transfer                                               |                                       | 5      | 2,000,000   | 100              | )% 3             | 0%             | 25%   | 45%           | 30%              | 30%              | 10%        | i            |
| Equity                                                            | 4                                     | 5      | 10,000,000  | 50               | )% 3             | 0%             | 20%   | 20%           | 30%              | 25%              | 0%         |              |
| <b>Resilience (Redundancy)</b>                                    | 9                                     | ;      | 20,000,000  | 100              | )% 3             | 0%             | 25%   | 45%           | 40%              | 40%              | 0%         |              |
| Sustainable Economic Fu                                           | ture                                  | ;      | 1,000,000   | 90               | )% 5             | 0%             | 30%   | 10%           | 30%              | 30%              | 17%        |              |
| Local Land Value                                                  | 5                                     | ;      | 10,000,000  | 10               | )% 3             | 0%             | 20%   | 30%           | 50%              | 50%              | 50%        |              |
| Local Land Development                                            |                                       | ;      | 10,000,000  | 10               | )% 3             | 0%             | 20%   | 30%           | 50%              | 50%              | 50%        | , 3          |
| Revenue                                                           | 9                                     | i 1,   | 500,000,000 | 10               | )% 1             | .0%            | 10%   | 10%           | 30%              | 30%              | 20%        | . 5          |
| Life Cycle Cost Savings                                           | 4                                     | ; 1,   | 000,000,000 | 10               | )% 1             | .0%            | 10%   | 10%           | 30%              | 25%              | 80%        |              |
| Total                                                             |                                       | 5 11,  | 005,000,000 | 735390377        | 5 27700352       | 49 2617556     | 5213  | 3332400000    | 2737800000       | 3271049641       | 1772689622 | 7530000      |
|                                                                   |                                       |        |             |                  |                  |                |       |               |                  |                  |            |              |
| Total Stakeholder-based                                           | benefits g                            | 5 24,  | 608,434,500 |                  |                  |                |       |               |                  |                  |            |              |
| bal ROI                                                           |                                       |        | 1.10        |                  |                  |                |       |               |                  |                  |            |              |
|                                                                   |                                       |        |             |                  |                  |                |       |               |                  |                  | Public     | P3 Project   |
|                                                                   |                                       |        |             | Federal          | State 1          | State 2        | St    | tate 3        | Local 1          | Local 2          | Agency     | Developers   |
| keholder Allocated Benefits                                       |                                       |        |             | \$ 7,353,903,775 | \$ 2,770,035,249 | \$ 2,617,556,2 | 13 \$ | 3,332,400,000 | \$ 2,737,800,000 | \$ 3,271,049,641 |            | \$ 753,000,0 |
| keholder ROI (with costs allocated by total stakeholder benefits) |                                       |        |             | 2.46             | 2.46             | 2              | .46   | 2.46          | 2.46             | 2.4              | 6 2.46     | 2            |
| ateholder ROI (with costs allocated by u                          | ser benefits only)                    | -      |             | 1.88             | 2.24             | 2              | .49   | 2.10          | 3.76             | 3.0              | 0 4.37     |              |








#### Guide for Decision-Makers 14 pages

#### Technical Appendices 41 pages

#### **ROI Tool** Spreadsheet + instructions



Guides and Tool at <a href="https://rail.transportation.org">https://rail.transportation.org</a>





### NEXT STEPS

### DOTs, other agencies to utilize the Business Case ROI Approach

- Flexible Use selection of parties, relevant themes
- Can use the documentation methods with or without the allocation spreadsheet
- Looking for pilot opportunities to demonstrate practical use of methods
- Report on results successes, limitations, challenges for future

Discussion of challenges and opportunities

Guides and Tool at <a href="https://rail.transportation.org">https://rail.transportation.org</a>





### 4. DISCUSSION

#### **Panelist Remarks**

- Arun Rao, Chair, States-for-Passenger Rail Coalition, Passenger Rail Manager, Wisconsin Department of Transportation
- Patricia Quinn, Exec. Director, Northern New England Passenger Rail Authority
- Sharon Greene, Managing Principal, InfraStrategies

#### <u>Q&A</u>

Responses by presenter, panel, and support by Charlie Quandel (Quandel Consultants) and Ira Hirschman (EBP)

### Guides and Tool at <a href="https://rail.transportation.org">https://rail.transportation.org</a>

Follow up contacts: glen.weisbrod@ebp-us.com sgill@aashto.org





aguzzetti@apta.com

