Applying Spatial Aggregation Methods to Identify Opportunities for New Bus Services in London

Cecilia Viggiano, EDR Group
Haris Koutsopoulos, Northeastern University
Nigel H.M. Wilson, Massachusetts Institute of Technology
John Attanucci, Massachusetts Institute of Technology
As demand patterns change, public transport systems must adapt.

- Land use and population changes impact travel demand.
- Planners make incremental changes to public transport networks.
Origin-destination (OD) data can support planning decisions
Origin-destination (OD) data can support planning decisions
Network Planning

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Network design</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frequency setting</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Timetable development</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vehicle scheduling</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crew scheduling</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Existing approaches to bus network planning

TNDP partial optimization methods

- Full network
- Design from scratch
- Demonstrated for real networks but rarely applied

(Guihaire and Hao, 2008; Yan, 2013; Bagloee and Ceder, 2011)

Ad hoc analysis

- Localized
- Existing networks

(Trial and error

(White, 1995; Cascetta and Carteni, 2014; Deakin et al., 2004)

abstract

proactive

realistic

reactive
Existing approaches to bus network planning

TNDP partial optimization methods
- Full network
- Design from scratch
- Demonstrated for real networks but rarely applied

(Guihaire and Hao, 2008; Yan, 2013; Bagloee and Ceder, 2011)

Ad hoc analysis
- Localized
- Existing networks

(White, 1995; Cascetta and Carteni, 2014; Deakin et al., 2004)

abstract

proactive

realistic

reactive
Objectives

Develop a framework and specific methodologies to identify opportunities for new bus routes that can be added to an existing network.

The methodology must:

- Systematically evaluate the entire network, including complex, multi-modal networks
- Be flexible
New bus routes can...

- Reduce circuity/stages
- Expand coverage
New bus routes can...

Reduce circuitry/stages

Expand coverage
Framework
Define OD pairs

OD-Level Analysis: Filter OD pairs and estimate potential benefits

(Spatially) aggregate OD-level information to generate planning recommendations
Spatial abstraction

abstraction

Nodes and lines

Road/walking networks, geographic barriers, constraints (termini)

reality
Step 1: Define OD pairs
Zones account for multiple paths
Roads as boundaries in existing zonal schemes
Objectives for zonal scheme

- Zone size reflecting access and egress distance
- Produce zones of uniform size and shape
- Cluster data points (bus stops and rail stations) near centroids

Options:
- Use euclidean or road (walking) network distance for similarity
- Weight stops/stations by mode
- Weight stops/station by demand
Step 2: OD Analysis
Well-served and improvable

Well-served:
OD pair is served by single-stage rail or direct and single-stage bus service

- **single-stage rail:** no in-station or out-of-station transfer required
- **direct:** distance within target distance standard

Improvable:
OD pair is not well-served, and expected travel time with new bus service is better than the current travel time
Target distance standard

Based on:
- Shortest path distance through the road network, avoiding highways (accounts for barriers)
- Scaling factors to account for required deviations from shortest path

Target travel time

Based on:
- Shortest path travel time through the road network, avoiding highways (accounts for barriers)
- Expected stopping time
- Scaling factors to account for required deviations from shortest path
Estimating OD-level benefits

Benefits to current passengers
- Estimate current passengers who are expected to shift to new service
- Benefits measured in terms of potential travel time savings

New passenger benefits
- Estimate new passengers expected to be attracted to the new service
 (Four-step model, direct demand model, elasticity)

Weighting: can weight each benefit according to planner priorities

Uncertainty: Estimates are uncertain - can estimate a range for each component
Step 3: Spatial Aggregation
Need to identify corridors
Trajectory clustering

● Extension of density-based scan to lines/trajectories instead of points
● Some cluster full trajectories, other cluster partial trajectories
● Bahbouh et al., 2015 built on work by Lee et al., 2007 to cluster desire lines for pedestrian planning.
Corridor identification algorithm

<table>
<thead>
<tr>
<th>Part 1</th>
<th>Define candidate corridors of appropriate shape, size, and demand for new bus services.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Part 2</td>
<td>Define final corridors, prioritized by potential benefits, with OD pairs assigned to at most 1 corridor.</td>
</tr>
</tbody>
</table>
Application
1,000 Zones Defined
Fewer stops and stations on boundaries
Of 45,154 OD pairs...

19,752 OD pairs

OD served by single-stage rail?

yes

well-served

OD served by single-stage bus?

yes

Current bus distance > target bus distance?

yes

not well-served

Current travel time > (\(\beta\) expected travel time)?

yes

improvable

no

not improvable

Add journey stages, if OD pair is in single-stage improvable set

17,942 OD pairs

no

well-served

Current travel time > (\(\beta\) expected travel time)?

yes

improvable

no

not improvable

Assign journey stages to zonal OD pairs

5,856 OD pairs

1,737 OD pairs

1,621 OD pairs

37,694 OD pairs
Journeys: all vs. improvable OD pairs

OD pairs analyzed

45,154 OD pairs
248,829 journeys per AM peak hour

Improvable OD pairs

7,477 OD pairs (17%)
17,418 journeys/AM peak hour (7%)
Opportunities for new bus routes

<table>
<thead>
<tr>
<th>Distance (time) multiplier (m)</th>
<th>1.1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distance additive term (a)</td>
<td>0.9 miles</td>
</tr>
<tr>
<td>Elasticities</td>
<td>-0.4 to -0.6</td>
</tr>
<tr>
<td>Maximum distance</td>
<td>0.4 miles</td>
</tr>
<tr>
<td>Corridor length</td>
<td>5 to 9 miles</td>
</tr>
<tr>
<td>Maximum angle</td>
<td>22.5°</td>
</tr>
<tr>
<td>Minimum flow</td>
<td>50 passengers per hour</td>
</tr>
</tbody>
</table>
Sensitivity to parameters

Increasing performance standards

Base
Base scenario

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distance (time) multiplier ((m))</td>
<td>1.1</td>
</tr>
<tr>
<td>Distance additive term ((a))</td>
<td>0.9 miles</td>
</tr>
<tr>
<td>Elasticities</td>
<td>-0.4 to -0.6</td>
</tr>
<tr>
<td>Maximum distance</td>
<td>0.4 miles</td>
</tr>
<tr>
<td>Corridor length</td>
<td>5 to 9 miles</td>
</tr>
<tr>
<td>Maximum angle</td>
<td>22.5°</td>
</tr>
<tr>
<td>Minimum flow</td>
<td>50 passengers per hour</td>
</tr>
</tbody>
</table>
Corridor 1

potential time savings (minutes)
- 2 - 6
- 6 - 10
- 10 - 14
- 14 - 18
- 18 - 22

EDR
Corridor 1
Corridor 6

potential time savings (minutes)
- 2 - 6
- 6 - 10
- 10 - 14
- 14 - 18
- 18 - 22

0 1 2 miles
Corridor 6

Potential time savings (minutes):
- 2 - 6
- 6 - 10
- 10 - 14
- 14 - 18
- 18 - 22

EDR
Discussion

- Depending on parameters, identified 4 to 16 corridors for improvement
Discussion

● Depending on parameters, identified 4 to 16 corridors for improvement

● Corridors appear promising based on post-analysis, particularly because flow is likely significantly underestimated.
 ○ Possible improvement: incorporate a more sophisticated demand model
Discussion

● Depending on parameters, identified 4 to 16 corridors for improvement

● Corridors appear promising based on post-analysis, particularly because flow is likely significantly underestimated.
 ○ Possible improvement: incorporate a more sophisticated demand model

● Opportunities for improvement in spatial representation
 ○ Can help ensure corridors can be served by a single route
 ○ Can better account for barriers
 ○ Can identify opportunities for non-linear corridors
Discussion

- Only 3 to 11% of improvable journeys assigned to corridors
 - Suggests need/opportunities for other modes (non fixed route)
Extension

- Adapt for planning of other modes or specific services
- Allow a transfer as part of improved service
- Recommend existing routes for removal
Contributions

- Bus network sketch planning framework
- New system for defining zones that reflect the transportation network.
- New metrics to evaluate quality of service and potential for improvement
- A spatial aggregation methodology that groups OD pairs into corridors
Thank you!